
python-pure-cdb Documentation
Release 4.0.0

dw, bbayles

Sep 03, 2022

Contents

1 Contents 3
1.1 Getting started . 3
1.2 Library reference . 4
1.3 python-cdb compatibility module . 8
1.4 Command line tools . 10
1.5 Version history . 11
1.6 Development information . 12

2 Indices and tables 13

i

ii

python-pure-cdb Documentation, Release 4.0.0

The python-pure-cdb package (pure-cdb on PyPI) is a Python library for working with D.J. Bernstein’s “constant
databases.”

In addition to being able to read and write the database files produced by other cdb tools, this package can produce
and consume “64-bit” constant databases that don’t have the usual 4 GiB restriction.

This package works with Python 3.4 and above. For a version that works with Python 2, see this older release. To
aid in porting cdb applications to Python 3, this library provides a compatability module for the python-cdb package,
which can act as a drop-in replacement (see the docs).

For more information on constant databases, see djb’s page and Wikipedia.

The documentation for this package is available at https://python-pure-cdb.readthedocs.io.

Contents 1

https://python-pure-cdb.readthedocs.io/en/latest/?badge=latest
https://pypi.org/project/pure-cdb/
https://github.com/dw/python-pure-cdb/releases/tag/v2.2.0
https://github.com/acg/python-cdb
https://python-pure-cdb.readthedocs.io
https://cr.yp.to/cdb.html
https://en.wikipedia.org/wiki/Cdb_(software)
https://python-pure-cdb.readthedocs.io

python-pure-cdb Documentation, Release 4.0.0

2 Contents

CHAPTER 1

Contents

1.1 Getting started

1.1.1 Installation

Install the library with pip:

pip install pure-cdb

Once the library is installed, import cdblib to use it.

1.1.2 Reading existing cdb files

cdblib.Reader can query an existing database.

Pass it a bytes-like object of the file’s contents to start:

>>> import cdblib
>>> with open('info.cdb', 'rb') as f:
... data = f.read()
>>> reader = cdblib.Reader(data)

Reader instances implement a dict-like interface. To retrieve everything stored in the database, use the .iteritems()
method.

>>> for key, value in reader.iteritems():
... print('+{},{}:{}->{}'.format(len(key), len(value), key, value))

To retrieve the first value stored at a key, use the .get() method.

>>> reader.get(b'some_key')
b'some_value'

3

https://pip.pypa.io/en/stable/

python-pure-cdb Documentation, Release 4.0.0

Note that all keys and values are bytes objects. For more information, see the library documentation.

You may also construct a Reader instance with a file path. Use a with block to automatically close the file:

>>> with cdblib.Reader.from_file_path('info.cdb', 'rb') as reader:
... pass # Do your thing here

For “64-bit” database files, use cdblib.Reader64 instead of cdblib.Reader.

1.1.3 Writing new cdb files

cdblib.Writer can create a new database.

Pass it a file-like object (opened in binary write mode) to start. Then write to the database with the .put() method.

>>> import cdblib
>>> with open('/tmp/new.cdb', 'wb') as f:
... with cdblib.Writer(f) as writer:
... writer.put(b'key', b'value')

As with the reader class, all keys and values are bytes objects.

For “64-bit” database files, use cdblib.Writer64 instead of cdblib.Writer.

1.2 Library reference

1.2.1 The Reader classes

cdblib.Reader reads standard “32-bit” cdb files, such as those produced by the cdbmake CLI tool. cdblib.Reader64
reads “64-bit” cdb files, which can be produced by this package.

The Reader classes can be instantiated by passing one positional argument, a bytes-like object with a database’s
content:

>>> import cdblib
>>> with open('info.cdb', 'rb') as f:
... data = f.read()
>>> reader = cdblib.Reader(data)

Alternatively, you can use the Reader classes as a context manager and give either a file path or a file-like object.

>>> with cdblib.Reader.from_file_path('info.cdb') as reader:
... print(reader.items())

>>> with open('info.cdb', 'rb') as f:
... with cdblib.Reader.from_file_obj(f) as reader:
... print(reader.items())

When using the .from_file_path() or .from_file_obj() constructors, a memory-mapped file object is created. This keeps
the whole database from being read into memory. See the Python docs for more information on mmap.

Retrieving data

The .items() method returns a list of (key, value) tuples representing all of the records stored in the database (in insertion
order). Note that a single key can have multiple values associated with it.

4 Chapter 1. Contents

https://docs.python.org/3/library/mmap.html

python-pure-cdb Documentation, Release 4.0.0

>>> reader.items()
[(b'k1', b'v1'), (b'k2', b'v2a'), (b'k2', b'v2b')]

The .iteritems() method is like .items(), but it returns an iterator over the items rather than a list.

The .keys() method returns a list of the keys stored in the database (in insertion order). The .iterkeys() method returns
an iterator over the keys. Note that keys will be repeated if a single key has multiple values associated with it.

The .values() method returns a list of the values stored in the database (in insertion order). The .itervalues() method
returns an iterator over the values.

Calling len() on a Reader instance returns the number of records (key-value pairs) stored in the database.

>>> len(reader)
3

The in operator can be used to test whether a key is present in the database.

>>> b'k1' in reader
True
>>> b'k3' in reader
False

The .get() method returns the first value in the database for key. If the key isn’t in the database, None will be returned.
To use a different default value, use the default keyword:

>>> reader.get(b'k2')
b'v2a'
>>> reader.get(b'missing')
None
>>> reader.get(b'missing', default=b'fallback')
b'fallback'

The .gets() method returns an iterator over all the values associated with key.

>>> list(reader.gets(b'k2'))
[b'v2a', b'v2b']

Reader instances also support dict-like retrieval of the first value associated with key. KeyError will be raised if the
requested key isn’t in the database.

>>> reader[b'k2']
b'v2a'
>>> reader[b'missing2']
KeyError: b'missing'

Note that the values retrieved by the .get() and .gets() methods are bytes objects.

If the values in the database represent integers, you can retrieve them as Python int objects with the .getint() and
.getints() methods.

>>> reader.get(b'key_with_int_value')
b'1'
>>> reader.getint(b'key_with_int_value')
1

1.2. Library reference 5

python-pure-cdb Documentation, Release 4.0.0

Similarly, the .getstring() and .getstrings() methods will retrieve the values as str objects.

>>> reader.get(b'key_with_str_value')
b'text data'
>>> reader.getstring(b'key_with_str_value')
'text data'

You may specify an encoding with the encoding keyword argument.

>>> reader.get(b'fancy_a_or_f')
b'\xc4'
>>> reader.getstring(b'fancy_a_or_f', encoding='cp1252')
'Ä'
>>> reader.getstring(b'fancy_a_or_f', encoding='mac-roman')
'ƒ'

Encoding and strict mode

Database keys are stored as bytes objects. By default, Reader instances will attempt to convert str keys and int keys
automatically.

>>> reader.get(b'1') # Binary key
b'value_for_1'
>>> reader.get('1') # Text key
b'value_for_1'
>>> reader.get(1) # Integer key
b'value_for_1'

To disable this behavior, pass strict=True when creating the Reader instance. This will increase read performance,
and is useful when you want to deal with bytes keys only.

>>> import cdblib
>>> with open('info.cdb', 'rb') as f:
... data = f.read()
>>> reader = cdblib.Reader(data, strict=True)
>>> reader.get(b'1') # Binary key
b'value_for_1'
>>> reader.get(1)
...
TypeError: key must be of type 'bytes'

1.2.2 The Writer classes

cdblib.Writer produces standard “32-bit” cdb files, which should be readable by other cdb tools like cdbget and cdb-
dump. cdblib.Writer64 produces “64-bit” cdb files, which can be read by this package.

The Writer classes take one positional argument, a file-like object opened in binary mode.

>>> import cdblib
...
... with open('info.cdb', 'wb') as f:
... writer = cdblib.Writer(f):
... writer.put(b'k1', b'v1a')
... writer.finalize()

6 Chapter 1. Contents

python-pure-cdb Documentation, Release 4.0.0

Writer instances don’t create readable databases until their .finalize() method is called. You should use them as a
context manager wherever possible - this ensures that .finalize() is called.

>>> with open('info.cdb', 'wb') as f:
... with cdblib.Writer(f) as writer:
... writer.put(b'k1', b'v1a')

Storing data

The .put() method is used to create a database record for a binary key and a binary value.

>>> import io
>>> import cdblib
>>> f = io.BytesIO() # Use an in-memory database
>>> writer = cdblib.writer(f)
>>> writer.put(b'k1', b'v1a')

The .puts() method adds multiple binary values at the same key.

>>> writer.puts(b'k2', [b'v2a', b'v2b'])

To store integer values, use .putint() or .putints().

>>> writer.putint(b'key_with_int_values', 1)
>>> writer.putints(b'key_with_int_values', [2, 3])

To store text data, use .putstring() or .putstrings(), with an optional encoding keyword argument. The default encoding
is ‘utf-8’.

>>> writer.putstring(b'fancy_a', 'Ä') # stores b'\xc3\x84'
>>> writer.putstring(b'fancy_a', 'Ä', encoding='cp1252') # stores b'\xc4'
>>> writer.putstrings(b'boring_a', ['a', 'A'])

As above, don’t forget to call .finalize() to write the database to disk if you’re not using a context manager.

>>> writer.finalize()

Encoding and strict mode

Database keys are stored as bytes objects. As with Reader instances, Writer instances will attempt to convert text keys
and integer keys automatically.

To disable this behavior, pass strict=True when creating the Writer instance. This will increase write performance,
and is useful when you want to deal with bytes keys only.

1.2.3 Advanced usage

Alternate hash functions

By default python-pure-cdb will use the standard cdb hash function described on djb’s page.

You can substitute in your own hash function when using a Writer instance, if you’re so inclined. This will of course
require you to use the same hash function when reading the database.

1.2. Library reference 7

https://cr.yp.to/cdb/cdb.txt

python-pure-cdb Documentation, Release 4.0.0

>>> import io
... import zlib
...
... import cdblib
...
...
... def custom_hash(x):
... return zlib.adler32(x) & 0xffffffff
...
...
... with io.BytesIO() as f:
... with cdblib.Writer(f, hashfn=custom_hash) as writer:
... writer.put(b'k1', b'v1a')
... writer.puts(b'k2', [b'v2a', b'v2b'])
...
... reader = cdblib.Reader(f.getvalue(), hashfn=custom_hash)
... reader.items()
[(b'k1', b'v1a'), (b'k2', b'v2a'), (b'k2', b'v2b')]

C extension hash function

When using CPython, you can build a C Extension that speeds up using the cdb hash function.

Set the ENABLE_DJB_HASH_CEXT environment variable when executing setup.py to enable the extension:

$ ENABLE_DJB_HASH_CEXT=1 python setup.py install

1.3 python-cdb compatibility module

cdblib.compat is designed to be used as a drop-in replacement for python-cdb, a Python 2-only module for interacting
with constant databases.

To use it in your Python 3 application:

import cdblib.compat as cdb # replaces import cdb

1.3.1 Reading existing databases

The init() function accepts a path to an existing database file. It returns a cdb object that can be used to retrieve records
from it.

>>> db = cdb.init('info.cdb')

The .each() method returns successive (key, value) pairs from the database. After the last record is returned the next
call will return None. The call after that will return the first record again.

>>> db.each()
('a', 'value_a1')
>>> db.each()
('a', 'value_a2')
>>> db.each()
('b', 'value_b1')

(continues on next page)

8 Chapter 1. Contents

https://github.com/acg/python-cdb

python-pure-cdb Documentation, Release 4.0.0

(continued from previous page)

>>> db.each() # No more records
>>> db.each() # Loop around to the first record
('a', 'value_a1')

The .keys() method returns a list of distinct keys from the database.

>>> db.keys()
['a', 'b']

The cdb object keeps an iterator over the distinct keys of the database. The .firstkey() method resets the iterator and
returns the first stored key. .nextkey() advances the iterator and returns the next key. After exhausting the iterator, None
will be returned until .firstkey() is called again.

>>> db.firstkey()
'a'
>>> db.nextkey()
'b'
>>> db.nextkey() # No more keys
>>> db.firstkey() # Reset the iterator
'a'

Call the .get() method with a key k and an optional index i to retrieve the i-th value stored under k. If there is no such
value, .get() returnes None.

>>> db.get('a')
'value_a1'
>>> db.get('a', 1)
'value_a2'
>>> db.get('a', 3) # Returns None

The cdb object can be accessed like a dict to retrieve the first value stored under a key. If there is no such key in the
database, KeyError is raised.

>>> db['a']
'value_a1'
>>> db['b']
'value_b1'

Call the .getall() method to retrieve a list of the values stored under the key k.

>>> db.getall('a')
['value_a1', 'value_a2']
>>> db.getall('b')
['value_b1']
>>> db.getall('c') # No such key, returns empty list
[]

The cdb object has a size property, which returns the total size of the database (in bytes). It also has a name property,
which returns the path to the database file.

1.3.2 Writing new databases

The cdbmake() class is used to create a new database. Call it with two file paths: (1) the ultimate location of the
database, (2) a temporary location to use when creating the database.

1.3. python-cdb compatibility module 9

python-pure-cdb Documentation, Release 4.0.0

>>> cdb_path = '/tmp/info.cdb'
>>> tmp_path = cdb_path + '.tmp'
>>> db = cdbmake(cdb_path, tmp_path)

Add records to the database with the .add() or .addmany() methods.

>>> db.add('b', 'value_b1')
>>> db.addmany([('a', 'value_a1'), ('a', 'value_a2')])

Write the database structure to disk and rename the temporary file to the ultimate file with the .finish() method.

1.3.3 Notes on encoding

Since python-cdb is a Python 2-only module, it does not distinguish between text and binary keys or values.

In order to handle str keys and values, cdblib.compat encodes text data on the way into the database:

>>> new_db.add('text_key', b'\x80 binary data') # Key is encoded to binary
>>> new_db.add(b'\x80 binary key', 'text_data') # Value is encoded to binary

It also decodes text data when reading:

>>> existing_db.get(b'\x80 binary key') # Text value is decoded
'text_data'
>>> existing_db.get('text_key') # Binary value is left alone
b'\x80 binary data'

utf-8 encoding is used by default in cdblib.compat.init() and cdblib.compat.cdbmake(). Pass a different encoding with
the encoding keyword argument.

Turn off automatic encoding or decoding by supplying encoding=None. All keys and values will be assumed to be
bytes objects.

>>> existing_db = cdblib.compat.init(cdb_path, encoding=None)
>>> new_db = cdblib.compat.make(cdb_path, tmp_path, encoding=None)

1.3.4 Other notes

The python-cdb package accepts integer file descriptors as well as file paths in init() and cdbmake(). This module does
not.

The cdb objects (returned by the init() function) and the cdbmake objects close their open file objects when they are
garbage collected. You may call the ._cleanup() method on either one to close the objects yourself (this method is not
avaialble when using the python-cdb package).

The cdb object returned by the init() function uses mmap.mmap to avoid reading the whole database file into memory.
This may be inappropriate when reading database files from certain locations, such as network drives. See the Python
docs for more information on mmap.

1.4 Command line tools

The python-pure-cdb package contains Python implementations of the cdbmake and cdbdump programs.

10 Chapter 1. Contents

https://docs.python.org/3/library/mmap.html
https://docs.python.org/3/library/mmap.html
https://cr.yp.to/cdb/cdbmake.html

python-pure-cdb Documentation, Release 4.0.0

python-pure-cdbmake should be able to create databases that are compatible with other implementations, including
the standard one. It can also create “64-bit” databases that don’t have the usual 4 GiB restriction.

Similarly, python-pure-cdbdump should be able to read databases produced by other implementations, including the
standard one. It can also read the “64-bit” databases produced by this package.

1.4.1 python-pure-cdbmake

This utility creates a database file from text records using the following format:

+klen,dlen:key->data

Where:

• klen is the length of key (in bytes)

• dlen is the length of data (in bytes)

• key can be any string of characters

• data can be any string of characters

Each record must end with a newline character. For example:

+1,2:a->bb
+2,1:aa->b

python-pure-cdbmake reads these records from stdin. When invoking the utility, you have to specify two file paths:

• The first (cdb) is the ultimate location of the database.

• The second (cdb.tm) is a temporary location to use when creating the database. It will be moved to the ultimate
location after completion.

$ <records_file.txt python-pure-cdbmake ~/records_db.cdb /tmp/records_db.tmp

Use the -64 switch to enable “64-bit” mode, which can write larger database files at the expense of compatibility with
other cdb packages.

1.4.2 python-pure-cdbdump

This utility creates a text export of the contents of a database file.

The output format is the same as the one used by python-pure-cdbmake for input - see above.

python-pure-cdbdump reads the database from stdin and prints to stdout.

$ <~records_db.cdb python-pure-cdbdump
+1,2:a->bb
+2,1:aa->b

Use the -64 switch to read databases created by this package using “64-bit” mode.

1.5 Version history

• Version 4.0.0

1.5. Version history 11

https://github.com/dw/python-pure-cdb/releases/tag/v4.0.0

python-pure-cdb Documentation, Release 4.0.0

– This package is now marked as supporting Python 3.6 and above

– Fixed a bug related to items that hash to the value 0 (thanks to pwlodarczyk92)

• Version 3.1.1

– Fixed a bug with handling hashing errors (thanks to maikroeder)

• Version 3.1.0

– Reader instances now act as context managers, and can be called with file paths or file-like objects.

• Version 3.0.0

– This package now supports Python 3 only. For a version that works with Python 2, see this older
release.

– Added the python-cdb compatibility module

• Version 2.2.0

– Added non-strict mode for convenience when using non-binary keys.

– API docs are now available at ReadTheDocs.

• Version 2.1.0

– Python 3 support

– Writer and Writer64 can now act as context managers.

– A Python implementation of cdbdump (python-pure-cdbdump) is now included.

– The Python implementation of cdbmake was renamed python-pure-cdbmake and some bugs were
fixed.

1.6 Development information

Development for python-pure-cdb takes place on GitHub.

1.6.1 Contributing

To file a bug report or make a suggestion, please create a GitHub issue.

To contribute a patch, please create a GitHub pull request.

1.6.2 Python version support

python-pure-cdb supports the versions of Python currently being maintained by the PSF. If you find a bug when using
an older version, feel free to file an issue about it, but note that it might not get fixed.

1.6.3 License

This project uses the MIT License.

12 Chapter 1. Contents

https://github.com/dw/python-pure-cdb/releases/tag/v3.1.1
https://github.com/dw/python-pure-cdb/releases/tag/v3.1.0
https://github.com/dw/python-pure-cdb/releases/tag/v3.0.0
https://github.com/dw/python-pure-cdb/releases/tag/v2.2.0
https://github.com/dw/python-pure-cdb/releases/tag/v2.2.0
https://github.com/dw/python-pure-cdb/releases/tag/v2.2.0
https://github.com/dw/python-pure-cdb/releases/tag/v2.1.0
https://github.com/dw/python-pure-cdb
https://github.com/dw/python-pure-cdb/issues
https://github.com/dw/python-pure-cdb/pulls
https://github.com/dw/python-pure-cdb/blob/master/LICENSE

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

13

	Contents
	Getting started
	Library reference
	python-cdb compatibility module
	Command line tools
	Version history
	Development information

	Indices and tables

